Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Benzylpyridine-2-sulfonamide

Xiao-Ping Chen and Shou-Fa Han*

Department of Chemistry and the Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University,
Xiamen 361005, People's Republic of China
Correspondence e-mail: xpchen1217@163.com
Received 7 May 2009; accepted 13 May 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; w R$ factor $=0.101$; data-to-parameter ratio $=14.0$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, was obtained by the reaction of 2-mercaptopyridine and benzylamine. The dihedral angle between the benzene and pyridine rings is 75.75 (9) ${ }^{\circ}$. In the crystal, molecules are linked into chains along the c axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds; the chains are cross-linked into a two-dimensional network parallel to the $b c$ plane via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the synthesis, see: Wright et al. (2006). For applications of sulfonamides, see: Connor (1998). For the structure of N -benzylquinoline-8-sulfonamide, see: Andrighetti-Fröhner et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$b=10.709(2) \AA$
$M_{r}=248.30$
$c=9.513$ (2) \AA
$\beta=91.893$ (4) ${ }^{\circ}$ 。
$V=1130.1(4) \AA^{3}$
$Z=4$
$T=173 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$

Data collection
Bruker SMART APEX areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.823, T_{\text {max }}=1.00$
(expected range $=0.783-0.951)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.101$
$S=1.00$
2195 reflections
157 parameters
$0.50 \times 0.20 \times 0.18 \mathrm{~mm}$

5922 measured reflections 2195 independent reflections 2078 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$ independent and constrained refinement
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{2}{ }^{\mathrm{i}}$	$0.82(2)$	$2.49(2)$	$3.264(2)$	$157(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.82(2)$	$2.50(2)$	$3.111(2)$	$132(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {ii }}$	0.95	2.52	$3.406(2)$	154
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iii }}$	0.95	2.51	$3.121(2)$	122
Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;$; (ii) $-x+1, y-\frac{1}{2},-z-\frac{1}{2} ;$ (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.				

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z-\frac{1}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant No. 20802060) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2800).

References

Andrighetti-Fröhner, C. R., da Silva, L. E., Nunes, R. J., Simões, C. M. O. \& Foro, S. (2006). Acta Cryst. E62, o3693-03694.
Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Connor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32-35.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wright, S. W. \& Hallstrom, K. N. (2006). J. Org. Chem. 71, 1080-1084.

supplementary materials

Acta Cryst. (2009). E65, ol414 [doi:10.1107/S1600536809018054]

N-Benzylpyridine-2-sulfonamide

X.-P. Chen and S.-F. Han

Comment

Sulfonamides are an important category of pharmaceutical compounds with a broad spectrum of biological activities, as good antibacterials, diuretics, anticonvulsants, and HIV protease inhibitors (Connor, 1998).

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are comparable to those observed for N-benzylquinoline-8-sulfonamide (Andrighetti-Fröhner et al., 2006). The $\mathrm{C} 1 — \mathrm{~S} 1 — \mathrm{~N} 1 — \mathrm{C} 6$ torsion angle is $-71.85(15)^{\circ}$. The dihedral angle between the benzene and pyridine rings is $75.75(9)^{\circ}$.

Hydrogen bonding plays a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. The molecules are linked into a chain along the c axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The chains are cross-linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network parallel to the $b c$ plane.

Experimental

The title compound was synthesized using a similar synthetic method for the preparation of heteroaryl sulfonamides (Wright et al., 2006). 2-Mercaptopyridine ($0.56 \mathrm{~g}, 5 \mathrm{mmol}$) was stirred in a mixture of 25 mL of dichloromethane and 25 mL of $1 M \mathrm{HCl}$ in a 125 ml flask for 8 min at 263 to 268 K . Cold sodium hypochlorite (6% solution, $0.68 \mathrm{M}, 26 \mathrm{ml}, 18 \mathrm{mmol}$, 3.3 equiv) was then added dropwise with very rapid stirring, maintaining the internal temperature at 263 to 268 K . The mixture was stirred for 30 min at 263 to 268 K after the addition was completed, the mixture was transferred to a separatory funnel (pre-cooled with ice water) and the dichloromethane layer was rapidly separated and collected in a clean 125 ml flask cooled in a ice-salt bath. Benzylamine $(1.1 \mathrm{ml}, 10 \mathrm{mmol})$ was added with stirring, when the dichloromethane layer became a white suspension, the flask was removed to an ice-water bath and the suspension was stirred for 30 min at 273 K . The suspension was then washed with 1 MHCl , then with water and brine. Drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration afforded the title compound as a white solid with 81% yield. Single crystals of the title compound were grown in a petroleum ether-ethyl acetate solution $(3: 1 \mathrm{v} / \mathrm{v})$ by slow evaporation.

Refinement

Atom H1 was located in a difference map and its positional parameters were refined. The remaining H atoms were positioned geometrically [C-H $=0.95 \AA$ (aromatic) and $0.99 \AA$ (methylene)] and were included in the refinement in the riding-model approximation. The isotropic displacement parameters were set at 1.2 times $U_{\text {eq }}$ of the parent atoms.

supplementary materials

Figures

Fig. 1. The molecular structure of the compound, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

N-Benzylpyridine-2-sulfonamide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=248.30$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.099$ (2) \AA
$b=10.709(2) \AA$
$c=9.513(2) \AA$
$\beta=91.893$ (4) ${ }^{\circ}$
$V=1130.1$ (4) \AA^{3}
$Z=4$
$F_{000}=520$
$D_{\mathrm{x}}=1.459 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 4484 reflections
$\theta=2.6-28.2^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Needle, colourless
$0.50 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.823, T_{\text {max }}=1.00$
5922 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.101$
$S=1.00$
2195 reflections

2195 independent reflections
2078 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.021$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$
$h=-12 \rightarrow 13$
$k=-11 \rightarrow 13$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0567 P)^{2}+0.7208 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$

157 parameters
$\Delta \rho_{\text {min }}=-0.40$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.29480(4)$	$0.35956(4)$	$-0.07138(4)$	$0.02300(15)$
O1	$0.23235(11)$	$0.37287(12)$	$-0.20382(13)$	$0.0297(3)$
O2	$0.35175(11)$	$0.46543(11)$	$-0.00687(13)$	$0.0303(3)$
N1	$0.20157(13)$	$0.30466(14)$	$0.03864(16)$	$0.0247(3)$
H1	$0.2331(19)$	$0.299(2)$	$0.118(2)$	0.030^{*}
N2	$0.37751(14)$	$0.15428(14)$	$-0.18353(16)$	$0.0288(3)$
C1	$0.40853(15)$	$0.24506(16)$	$-0.09461(17)$	$0.0242(4)$
C2	$0.51786(16)$	$0.25414(18)$	$-0.02210(19)$	$0.0296(4)$
H2	0.5353	0.3219	0.0397	0.036^{*}
C3	$0.60085(17)$	$0.16046(19)$	$-0.0433(2)$	$0.0336(4)$
H3	0.6775	0.1622	0.0041	0.040^{*}
C4	$0.57087(17)$	$0.06477(18)$	$-0.13383(19)$	$0.0332(4)$
H4	0.6264	-0.0009	-0.1497	0.040^{*}
C5	$0.45909(17)$	$0.06519(18)$	$-0.20149(19)$	$0.0329(4)$
H5	0.4393	-0.0014	-0.2640	0.039^{*}
C6	$0.11909(16)$	$0.20325(17)$	$-0.00404(19)$	$0.0297(4)$
H6A	0.1627	0.1226	0.0006	0.036^{*}
H6B	0.0903	0.2166	-0.1025	0.036^{*}
C7	$0.01310(15)$	$0.19830(16)$	$0.09002(17)$	$0.0240(4)$
C8	$-0.01617(16)$	$0.08823(16)$	$0.15529(19)$	$0.0274(4)$
H8	0.0322	0.0162	0.1424	0.033^{*}
C9	$-0.11535(16)$	$0.08132(18)$	$0.23949(19)$	$0.0321(4)$
H9	-0.1354	0.0046	0.2830	0.039^{*}
C10	$-0.18463(17)$	$0.18527(19)$	$0.2601(2)$	$0.0345(4)$
H10	-0.2523	0.1809	0.3185	0.041^{*}
C11	$-0.15598(17)$	$0.29609(18)$	$0.1958(2)$	$0.0353(4)$
H11	-0.2037	0.3683	0.2104	0.042^{*}
C12	$-0.05840(17)$	$0.30255(17)$	$0.1105(2)$	$0.0301(4)$
H12	-0.0399	0.3790	0.0653	0.036^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0240(2)$	$0.0224(2)$	$0.0226(2)$	$-0.00314(15)$	$0.00148(16)$	$0.00164(15)$
O1	$0.0300(6)$	$0.0336(7)$	$0.0254(7)$	$-0.0023(5)$	$-0.0006(5)$	$0.0055(5)$
O2	$0.0312(6)$	$0.0233(6)$	$0.0364(7)$	$-0.0054(5)$	$-0.0001(5)$	$0.0000(5)$
N1	$0.0253(7)$	$0.0274(8)$	$0.0215(7)$	$-0.0047(6)$	$0.0020(6)$	$-0.0024(6)$
N2	$0.0323(8)$	$0.0296(8)$	$0.0245(8)$	$-0.0012(6)$	$0.0005(6)$	$-0.0012(6)$
C1	$0.0248(8)$	$0.0264(8)$	$0.0215(8)$	$-0.0040(7)$	$0.0046(6)$	$0.0024(6)$
C2	$0.0260(9)$	$0.0326(9)$	$0.0303(9)$	$-0.0045(7)$	$0.0012(7)$	$0.0000(7)$
C3	$0.0259(9)$	$0.0405(10)$	$0.0346(10)$	$-0.0009(8)$	$0.0040(7)$	$0.0058(8)$
C4	$0.0355(10)$	$0.0352(10)$	$0.0295(9)$	$0.0068(8)$	$0.0098(7)$	$0.0040(8)$
C5	$0.0415(10)$	$0.0307(9)$	$0.0266(9)$	$0.0020(8)$	$0.0039(8)$	$-0.0030(7)$
C6	$0.0315(9)$	$0.0287(9)$	$0.0293(9)$	$-0.0085(7)$	$0.0084(7)$	$-0.0066(7)$
C7	$0.0233(8)$	$0.0270(8)$	$0.0217(8)$	$-0.0053(7)$	$0.0000(6)$	$-0.0029(6)$
C8	$0.0276(8)$	$0.0240(8)$	$0.0306(9)$	$-0.0019(7)$	$0.0003(7)$	$-0.0022(7)$
C9	$0.0340(9)$	$0.0310(9)$	$0.0315(9)$	$-0.0079(8)$	$0.0042(7)$	$0.0035(8)$
C10	$0.0275(9)$	$0.0421(11)$	$0.0343(10)$	$-0.0065(8)$	$0.0088(7)$	$-0.0059(8)$
C11	$0.0292(9)$	$0.0331(10)$	$0.0438(11)$	$0.0038(8)$	$0.0020(8)$	$-0.0049(8)$
C12	$0.0329(9)$	$0.0251(9)$	$0.0323(9)$	$-0.0015(7)$	$-0.0008(7)$	$0.0022(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 1$	$1.4249(13)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4268(13)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.6073(15)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7787(18)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.469(2)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.82(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.327(2)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.330(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.379(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.95
$\mathrm{C} 3-\mathrm{C} 4$	$1.373(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.95
$\mathrm{C} 4-\mathrm{C} 5$	$1.379(3)$
$\mathrm{C} 4-\mathrm{H} 4$	0.95
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.76(8)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$107.91(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$107.23(8)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.59(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$107.16(8)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$107.67(8)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{S} 1$	$119.95(12)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	$116.0(15)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1$	$111.2(15)$

$\mathrm{C} 5-\mathrm{H} 5$	0.95
$\mathrm{C} 6-\mathrm{C} 7$	$1.502(2)$
$\mathrm{C} 6-\mathrm{H} 6 A$	0.99
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.99
$\mathrm{C} 7-\mathrm{C} 8$	$1.376(2)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.387(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.385(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.95
$\mathrm{C} 9-\mathrm{C} 10$	$1.371(3)$
C9-H9	0.95
$\mathrm{C} 10-\mathrm{C} 11$	$1.377(3)$
$\mathrm{C} 10-\mathrm{H} 10$	0.95
$\mathrm{C} 11-\mathrm{C} 12$	$1.376(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.95
$\mathrm{C} 12-\mathrm{H} 12$	0.95
N1-C6-C7	$110.77(14)$
N1-C6-H6A	109.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
N1-C6-H6B	109.5
C7-C6-H6B	109.5
H6A-C6-H6B	108.1
C8-C7-C12	$118.78(16)$
C8-C7-C6	$120.01(16)$
C12-C7-C6	$121.20(16)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 5$	$116.37(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$125.17(17)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$114.46(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.36(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.12(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.00(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.10(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{~N} 2-\mathrm{C} 5-\mathrm{C} 4$	$123.24(17)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6$	$42.85(16)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6$	$173.12(13)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6$	$-71.85(15)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$0.8(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$-178.54(13)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$-34.71(14)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$-164.06(12)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$80.87(14)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$145.94(14)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$16.58(16)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-98.49(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(3)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.71(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(3)$

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.72(17)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.6
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.6
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$119.98(17)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.85(18)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	120.1
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.1
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$120.18(18)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	119.9
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	119.9
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$120.48(17)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.8
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12$	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$0.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-0.4(3)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-0.1(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-159.20(13)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	$-126.83(17)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$54.6(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-178.38(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.9(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.6(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$0.3(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-1.0(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$0.7(3)$
	$179.29(17)$

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.82(2)$	$2.49(2)$	$3.264(2)$	$157(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.82(2)$	$2.50(2)$	$3.111(2)$	$132(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.95	2.52	$3.406(2)$	154
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.95	2.51	$3.121(2)$	122

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x+1, y-1 / 2,-z-1 / 2$; (iii) $x,-y+1 / 2, z-1 / 2$.
supplementary materials

Fig. 1

